Tuesday 20 May 2014

Proxy traversal

WebSocket protocol client implementations try to detect if the user agent is configured to use a proxy when connecting to destination host and port and, if it is, uses HTTP CONNECT method to set up a persistent tunnel.
While the WebSocket protocol itself is unaware of proxy servers and firewalls, it features an HTTP-compatible handshake so that HTTP servers can share their default HTTP and HTTPS ports (80 and 443) with a WebSocket gateway or server. The WebSocket protocol defines a ws:// and wss:// prefix to indicate a WebSocket and a WebSocket Secure connection, respectively. Both schemes use an HTTP upgrade mechanism to upgrade to the WebSocket protocol. Some proxy servers are transparent and work fine with WebSocket; others will prevent WebSocket from working correctly, causing the connection to fail. In some cases, additional proxy server configuration may be required, and certain proxy servers may need to be upgraded to support WebSocket.

If unencrypted WebSocket traffic flows through an explicit or a transparent proxy server on its way to the WebSocket server, then, whether or not the proxy server behaves as it should, the connection is almost certainly bound to fail today (as WebSocket become more mainstream, proxy servers may become WebSocket aware). Therefore, unencrypted WebSocket connections should be used only in the simplest topologies.
If an encrypted WebSocket connection is used, then the use of Transport Layer Security (TLS) in the WebSocket Secure connection ensures that an HTTP CONNECT command is issued when the browser is configured to use an explicit proxy server. This sets up a tunnel, which provides low-level end-to-end TCP communication through the HTTP proxy, between the WebSocket Secure client and the WebSocket server. In the case of transparent proxy servers, the browser is unaware of the proxy server, so no HTTP CONNECT is sent. However, since the wire traffic is encrypted, intermediate transparent proxy servers may simply allow the encrypted traffic through, so there is a much better chance that the WebSocket connection will succeed if WebSocket Secure is used. Using encryption is not free of resource cost, but often provides the highest success rate since it would be travelling through a secure tunnel.
A mid-2010 draft (version hixie-76) broke compatibility with reverse-proxies and gateways by including 8 bytes of key data after the headers, but not advertising that data in a Content-Length: 8 header. This data was not forwarded by all intermediates, which could lead to protocol failure. More recent drafts (e.g., hybi-09) put the key data in a Sec-WebSocket-Key header, solving this problem.


No comments:

Post a Comment